Redistribution of nucleoside transporters to the cell membrane provides a novel approach for imaging thymidylate synthase inhibition by positron emission tomography.
نویسندگان
چکیده
Thymidylate synthase (EC 2.1.1.45) is a key enzyme for the de novo synthesis of DNA and as such a target for anticancer drug development. There is a need to develop noninvasive methods for assessing thymidylate synthase inhibition in tumors. The aim of this study was to assess the potential of 3'-deoxy-3'-[(18)F]fluorothymidine ([(18)F]FLT) positron emission tomography (PET) for early measurement of thymidylate synthase inhibition and to elucidate the cellular mechanisms involved. Radiation-induced fibrosarcoma-1 tumor-bearing mice were injected with a single i.p. dose of the thymidylate synthase inhibitor 5-fluorouracil (5-FU; 165 mg/kg) and imaged by [(18)F]FLT-PET at 1 to 2 hours after treatment. Deoxyuridine, thymidine kinase 1 (cytoplasmic thymidine kinase; EC2.7.1.21), and ATP levels in excised tumors were measured. Cellular assays for membrane transport were also done. There was a 1.8-fold increase in the 60-minute [(18)F]FLT tumor/heart radioactivity ratio in drug-treated mice compared with vehicle controls (P = 0.0016). Plasma and tumor deoxyuridine levels increased significantly but thymidine kinase and ATP levels were unchanged. Whole-cell assays implicated a (low level) functional role for the type-1 equilibrative nucleoside transporter (ENT). There was an increase in type-1 ENT-binding sites per cell from 49,110 in untreated cells to 73,142 (P = 0.03) in cells treated with 10 microg/mL 5-FU for 2 hours, without a change in transporter affinity (P = 0.41). We conclude that [(18)F]FLT-PET can be used to measure thymidylate synthase inhibition as early as 1 to 2 hours after treatment with 5-FU by a mechanism involving redistribution of nucleoside transporters to the plasma membrane.
منابع مشابه
Early detection of pemetrexed-induced inhibition of thymidylate synthase in non-small cell lung cancer with FLT-PET imaging
Inhibition of thymidylate synthase (TS) results in a transient "flare" in DNA thymidine salvage pathway activity measurable with FLT ([18F]thymidine)-positron emission tomography (PET). Here we characterize this imaging strategy for potential clinical translation in non-small cell lung cancer (NSCLC). Since pemetrexed acts by inhibiting TS, we defined the kinetics of increases in thymidine salv...
متن کاملTargeted Thymidylate Synthase Inhibitor BGC 945 − - Folate Receptor α Imaging Pharmacodynamics of the Updated
The assessment of tissue-specific pharmacodynamics is desirable in the development of tumor-targeted therapies. Plasma deoxyuridine (dUrd) levels, a measure of systemic thymidylate synthase (TS) inhibition, has limited application for studying the pharmacodynamics of novel TS inhibitors targeted to the high affinity A-folate receptor (FR). Here, we have evaluated the utility of [F]fluorothymidi...
متن کاملAltered tissue 3'-deoxy-3'-[18F]fluorothymidine pharmacokinetics in human breast cancer following capecitabine treatment detected by positron emission tomography.
PURPOSE We showed in preclinical models that thymidylate synthase (TS) inhibition leads to redistribution of the nucleoside transporter, ENT1, to the cell membrane and hence increases tissue uptake of [(18)F]fluorothymidine (FLT). In this study, we assessed for the first time the altered pharmacokinetics of FLT in patients following administration of capecitabine, a drug whose mode of action ha...
متن کاملThe effect of fasting on Positron Emission Tomography (PET) imaging
As a nuclear approach, Positron Emission Tomography (PET) is a functional imaging technique which is based on the detection of gamma ray pairs emitted by a positron-emitting radionuclide. There are certain limitations to this technique such as normal tissue uptake. Therefore, it has been recommended that patients prepare before scanning. Fasting for a short while before PET imaging is an exampl...
متن کاملDetection of Alzheimer\\\\\\\'s Disease using Multitracer Positron Emission Tomography Imaging
Alzheimer's disease is characterized by impaired glucose metabolism and demonstration of amyloid plaques. Individual positron emission tomography tracers may reveal specific signs of pathology that is not readily apparent on inspection of another one. Combination of multitracer positron emission tomography imaging yields promising results. In this paper, 57 Alzheimer's disease neuroimaging ini...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cancer research
دوره 66 17 شماره
صفحات -
تاریخ انتشار 2006